quarta-feira, 24 de novembro de 2010

Cinco Sentidos
Conheça quais são os cinco sentidos humanos, características, importância

cinco sentidos
Visão, Audição, Paladar, Tato e Olfato: os cinco sentidos humanos

Introdução

O corpo humano é dotado de cinco sentidos (capacidades) que lhe possibilita interagir com o mundo exterior (pessoas, objetos, luzes, fenômenos climáticos, cheiros, sabores, etc). Através de determinados órgãos do corpo humano, são enviadas ao cérebro as sensações, utilizando uma rede de neurônios que fazem parte do sistema nervoso.

Visão

É a capacidade de visualizar objetos e pessoas. O olho capta a imagem e envia para o cérebro, para que este faça o reconhecimento e interpretação.

Audição

É a capacidade de ouvir os sons (vozes, ruídos, barulhos, músicas) provenientes do mundo exterior. O ouvido capta as ondas sonoras e as envia para que o cérebro faça a interprestação daquele som.

Paladar

Este sentido (capacidade) permite ao ser humano sentir o gosto (sabor) dos alimentos e bebidas. Na superfície de nossas línguas existem milhares de papilas gustativas. São elas que captam o sabor dos alimentos e enviam as informações ao cérebro, através de milhões de neurônios.

Tato

É o sentido que permite ao ser humano sentir o mundo exterior através do contato com a pele. Abaixo da pele humana existem neurônios sensoriais. Quando a informação chega ao cérebro, uma reação pode ser tomada de acordo com a necessidade ou vontade.

Olfato

Sentido relacionado à capacidade de sentir o cheiro das coisas. O nariz humano possui a capacidade de captar os odores do meio externo. Estes cheiros são enviados ao cérebro que efetua a interpretação.

Caverna de Botuverá



quarta-feira, 17 de novembro de 2010

Botuverá

Viagem a Botuverá
no dia 27/10 de 2010 nos do 8º1 e os alunos do 8º02 fomos fazer uma viagem a Botuverá visitar a cavernas antes de nos irmos a Botuverá nos fomos ao zoobotânico visitar e la nos vimos jacaré,pavão,galinha,onça,tartaruga,gato do mato,passaro,macaco etc.E depois nos fomos a Botuverá nos lanchamos um pouco e depois nos se separemos em 3 grupos e nos entramos no 1º grupo e nos aprendemos bastante que a caverna foi descoberta em 1940 por um cachorro e os moradores da região e nos aprendemos o que é estalaguimites é uns espinhos cumpridos por cau ,água e outros minerais que existem.
estalaguimites são espinhos no chão da caverna,formado por cau,água e outros minerais.
E tem 3 saloes
1 salão e orgão,onde batemos na rocha e faz um som parecido com um orgão.
2 salão e geleira tem forma de gelo.
3 salão e catedral mais conhecido como sala do descanço.

sexta-feira, 12 de novembro de 2010

CORAÇÃO

O coração é um órgão muscular oco que se localiza no meio do peito, sob o osso esterno, ligeiramente deslocado para a esquerda. Em uma pessoa adulta, tem o tamanho aproximado de um punho fechado e pesa cerca de 400 gramas.

O coração humano, como o dos demais mamíferos, apresenta quatro cavidades: duas superiores, denominadas átrios (ou aurículas) e duas inferiores, denominadas ventrículos. O átrio direito comunica-se com o ventrículo direito através da válvula tricúspide. O átrio esquerdo, por sua vez, comunica-se com o ventrículo esquerdo através da válvula bicúspide ou mitral.A função das válvulas cardíacas é garantir que o sangue siga uma única direção, sempre dos átrios para os ventrículos.

1 - Coronária Direita
2 - Coronária Descendente Anterior Esquerda
3 - Coronária Circunflexa Esquerda
4 - Veia Cava Superior
5 - Veia Cava Inferior
6 - Aorta
7 - Artéria Pulmonar
8 - Veias Pulmonares
9 - Átrio Direito
10 - Ventrículo Direito
11 - Átrio Esquerdo
12 - Ventrículo Esquerdo
13 - Músculos Papilares
14 - Cordoalhas Tendíneas
15 - Válvula Tricúspide
16 - Válvula Mitral
17 - Válvula Pulmonar

Imagem: ATLAS INTERATIVO DE ANATOMIA HUMANA. Artmed Editora.

As câmaras cardíacas contraem-se e dilatam-se alternadamente 70 vezes por minuto, em média. O processo de contração de cada câmara do miocárdio (músculo cardíaco) denomina-se sístole. O relaxamento, que acontece entre uma sístole e a seguinte, é a diástole.

a- A atividade elétrica do coração

Imagem: AVANCINI & FAVARETTO. Biologia – Uma abordagem evolutiva e ecológica. Vol. 2. São Paulo, Ed. Moderna, 1997.

Nódulo sinoatrial (SA) ou marcapasso ou nó sino-atrial: região especial do coração, que controla a freqüência cardíaca. Localiza-se perto da junção entre o átrio direito e a veia cava superior e é constituído por um aglomerado de células musculares especializadas. A freqüência rítmica dessa fibras musculares é de aproximadamente 72 contrações por minuto, enquanto o músculo atrial se contrai cerca de 60 vezes por minuto e o músculo ventricular, cerca de 20 vezes por minuto. Devido ao fato do nódulo sinoatrial possuir uma freqüência rítmica mais rápida em relação às outras partes do coração, os impulsos originados do nódulo SA espalham-se para os átrios e ventrículos, estimulando essas áreas tão rapidamente, de modo que o ritmo do nódulo SA torna-se o ritmo de todo o coração; por isso é chamado marcapasso.

Sistema De Purkinje ou fascículo átrio-ventricular: embora o impulso cardíaco possa percorrer perfeitamente todas as fibras musculares cardíacas, o coração possui um sistema especial de condução denominado sistema de Purkinje ou fascículo átrio-ventricular, composto de fibras musculares cardíacas especializadas, ou fibras de Purkinje (Feixe de Hiss ou miócitos átrio-ventriculares), que transmitem os impulsos com uma velocidade aproximadamente 6 vezes maior do que o músculo cardíaco normal, cerca de 2 m por segundo, em contraste com 0,3 m por segundo no músculo cardíaco.

b- Controle Nervoso do Coração

Embora o coração possua seus próprios sistemas intrínsecos de controle e possa continuar a operar, sem quaisquer influências nervosas, a eficácia da ação cardíaca pode ser muito modificada pelos impulsos reguladores do sistema nervoso central. O sistema nervoso é conectado com o coração através de dois grupos diferentes de nervos, os sistemas parassimpático e simpático. A estimulação dos nervos parassimpáticos causa os seguintes efeitos sobre o coração: (1) diminuição da freqüência dos batimentos cardíacos; (2) diminuição da força de contração do músculo atrial; (3) diminuição na velocidade de condução dos impulsos através do nódulo AV (átrio-ventricular) , aumentando o período de retardo entre a contração atrial e a ventricular; e (4) diminuição do fluxo sangüíneo através dos vasos coronários que mantêm a nutrição do próprio músculo cardíaco.

Todos esses efeitos podem ser resumidos, dizendo-se que a estimulação parassimpática diminui todas as atividades do coração. Usualmente, a função cardíaca é reduzida pelo parassimpático durante o período de repouso, juntamente com o restante do corpo. Isso talvez ajude a preservar os recursos do coração; pois, durante os períodos de repouso, indubitavelmente há um menor desgaste do órgão.

A estimulação dos nervos simpáticos apresenta efeitos exatamente opostos sobre o coração: (1) aumento da freqüência cardíaca, (2) aumento da força de contração, e (3) aumento do fluxo sangüíneo através dos vasos coronários visando a suprir o aumento da nutrição do músculo cardíaco. Esses efeitos podem ser resumidos, dizendo-se que a estimulação simpática aumenta a atividade cardíaca como bomba, algumas vezes aumentando a capacidade de bombear sangue em até 100 por cento. Esse efeito é necessário quando um indivíduo é submetido a situações de estresse, tais como exercício, doença, calor excessivo, ou outras condições que exigem um rápido fluxo sangüíneo através do sistema circulatório. Por conseguinte, os efeitos simpáticos sobre o coração constituem o mecanismo de auxílio utilizado numa emergência, tornando mais forte o batimento cardíaco quando necessário.

Os neurônios pós-ganglionares do sistema nervoso simpático secretam principalmente noradrenalina, razão pela qual são denominados neurônios adrenérgicos. A estimulação simpática do cérebro também promove a secreção de adrenalina pelas glândulas adrenais ou supra-renais. A adrenalina é responsável pela taquicardia (batimento cardíaco acelerado), aumento da pressão arterial e da freqüência respiratória, aumento da secreção do suor, da glicose sangüínea e da atividade mental, além da constrição dos vasos sangüíneos da pele.

O neurotransmissor secretado pelos neurônios pós-ganglionares do sistema nervoso parassimpático é a acetilcolina, razão pela qual são denominados colinérgicos, geralmente com efeitos antagônicos aos neurônios adrenérgicos. Dessa forma, a estimulação parassimpática do cérebro promove bradicardia (redução dos batimentos cardíacos), diminuição da pressão arterial e da freqüência respiratória, relaxamento muscular e outros efeitos antagônicos aos da adrenalina.

Em geral, a estimulação do hipotálamo posterior aumenta a pressão arterial e a freqüência cardíaca, enquanto que a estimulação da área pré-óptica, na porção anterior do hipotálamo, acarreta efeitos opostos, determinando notável diminuição da freqüência cardíaca e da pressão arterial. Esses efeitos são transmitidos através dos centros de controle cardiovascular da porção inferior do tronco cerebral, e daí passam a ser transmitidos através do sistema nervoso autônomo.

Fatores que aumentam a freqüência cardíaca

Fatores que diminuem a freqüência cardíaca

Queda da pressão arterial

inspiração

excitação

raiva

dor

hipóxia (redução da disponibilidade de oxigênio para as células do organismo)

exercício

adrenalina

febre

Aumento da pressão arterial

expiração

tristeza

muscular

SISTEMA MUSCULAR

O tecido muscular é de origem mesodérmica, sendo caracterizado pela propriedade de contração e distensão de suas células, o que determina a movimentação dos membros e das vísceras. Há basicamente três tipos de tecido muscular: liso, estriado esquelético e estriado cardíaco.

Músculo liso: o músculo involuntário localiza-se na pele, órgãos internos, aparelho reprodutor, grandes vasos sangüíneos e aparelho excretor. O estímulo para a contração dos músculos lisos é mediado pelo sistema nervoso vegetativo.

Músculo estriado esquelético: é inervado pelo sistema nervoso central e, como este se encontra em parte sob controle consciente, chama-se músculo voluntário. As contrações do músculo esquelético permitem os movimentos dos diversos ossos e cartilagens do esqueleto.

Músculo cardíaco: este tipo de tecido muscular forma a maior parte do coração dos vertebrados. O músculo cardíaco carece de controle voluntário. É inervado pelo sistema nervoso vegetativo.

Estriado esquelético

Miócitos longos, multinucleados (núcleos periféricos).

Miofilamentos organizam-se em estrias longitudinais e transversais.

Contração rápida e voluntária

Estriado cardíaco

Miócitos estriados com um ou dois núcleos centrais.

Células alongadas, irregularmente ramificadas, que se unem por estruturas especiais: discos intercalares.

Contração involuntária, vigorosa e rítmica.

Liso

Miócitos alongados, mononucleados e sem estrias transversais.

Contração involuntária e lenta.

Musculatura Esquelética

O sistema muscular esquelético constitui a maior parte da musculatura do corpo, formando o que se chama popularmente de carne. Essa musculatura recobre totalmente o esqueleto e está presa aos ossos, sendo responsável pela movimentação corporal.

Os músculos esqueléticos estão revestidos por uma lâmina delgada de tecido conjuntivo, o perimísio, que manda septos para o interior do músculo, septos dos quais se derivam divisões sempre mais delgadas. O músculo fica assim dividido em feixes (primários, secundários, terciários). O revestimento dos feixes menores (primários), chamado endomísio, manda para o interior do músculo membranas delgadíssimas que envolvem cada uma das fibras musculares. A fibra muscular é uma célula cilíndrica ou prismática, longa, de 3 a 12 centímetros; o seu diâmetro é infinitamente menor, variando de 20 a 100 mícrons (milésimos de milímetro), tendo um aspecto de filamento fusiforme. No seu interior notam-se muitos núcleos, de modo que se tem a idéia de ser a fibra constituída por várias células que perderam os seus limites, fundindo-se umas com as outras. Dessa forma, podemos dizer que um músculo esquelético é um pacote formado por longas fibras, que percorrem o músculo de ponta a ponta.

No citoplasma da fibra muscular esquelética há muitas miofibrilas contráteis, constituídas por filamentos compostos por dois tipos principais de proteínas – a actina e a miosina. Filamentos de actina e miosina dispostos regularmente originam um padrão bem definido de estrias (faixas) transversais alternadas, claras e escuras. Essa estrutura existe somente nas fibras que constituem os músculos esqueléticos, os quais são por isso chamados músculos estriados.

Em torno do conjunto de miofibrilas de uma fibra muscular esquelética situa-se o retículo sarcoplasmático (retículo endoplasmático liso), especializado no armazenamento de íons cálcio.

As miofibrilas são constituídas por unidades que se repetem ao longo de seu comprimento, denominadas sarcômeros. A distribuição dos filamentos de actina e miosina varia ao longo do sarcômero. As faixas mais extremas e mais claras do sarcômero, chamadas banda I, contêm apenas filamentos de actina. Dentro da banda I existe uma linha que se cora mais intensamente, denominada linha Z, que corresponde a várias uniões entre dois filamentos de actina. A faixa central, mais escura, é chamada banda A, cujas extremidades são formadas por filamentos de actina e miosina sobrepostos. Dentro da banda A existe uma região mediana mais clara – a banda H – que contém apenas miosina. Um sarcômero compreende o segmento entre duas linhas Z consecutivas e é a unidade contrátil da fibra muscular, pois é a menor porção da fibra muscular com capacidade de contração e distensão.

1- Bandas escuras (anisotrópicas – banda A).

2- Faixas claras (isotrópicas – banda I, com linha Z central).

3- Núcleos periféricos.

Contração: ocorre pelo deslizamento dos filamentos de actina sobre os de miosina c sarcômero diminui devido à aproximação das duas linhas Z, e a zona H chega a desaparecer.

A contração do músculo esquelético é voluntária e ocorre pelo deslizamento dos filamentos de actina sobre os de miosina. Nas pontas dos filamentos de miosina existem pequenas projeções, capazes de formar ligações com certos sítios dos filamentos de actina, quando o músculo é estimulado. Essas projeções de miosina puxam os filamentos de actina, forçando-os a deslizar sobre os filamentos de miosina. Isso leva ao encurtamento das miofibrilas e à contração muscular. Durante a contração muscular, o sarcômero diminui devido à aproximação das duas linhas Z, e a zona H chega a desaparecer.

Constatou-se, através de microscopia eletrônica, que o sarcolema (membrana plasmática) da fibra muscular sofre invaginações, formando túbulos anastomosados que envolvem cada conjunto de miofibrilas. Essa rede foi denominada sistema T, pois as invaginações são perpendiculares as miofibrilas. Esse sistema é responsável pela contração uniforme de cada fibra muscular estriada esquelética, não ocorrendo nas fibras lisas e sendo reduzido nas fibras cardíacas.

A química da contração muscular

O estímulo para a contração muscular é geralmente um impulso nervoso, que chega à fibra muscular através de um nervo. O impulso nervoso propaga-se pela membrana das fibras musculares (sarcolema) e atinge o retículo sarcoplasmático, fazendo com que o cálcio ali armazenado seja liberado no hialoplasma. Ao entrar em contato com as miofibrilas, o cálcio desbloqueia os sítios de ligação da actina e permite que esta se ligue à miosina, iniciando a contração muscular. Assim que cessa o estímulo, o cálcio é imediatamente rebombeado para o interior do retículo sarcoplasmático, o que faz cessar a contração.

A energia para a contração muscular é suprida por moléculas de ATP produzidas durante a respiração celular. O ATP atua tanto na ligação da miosina à actina quanto em sua separação, que ocorre durante o relaxamento muscular. Quando falta ATP, a miosina mantém-se unida à actina, causando enrijecimento muscular. É o que acontece após a morte, produzindo-se o estado de rigidez cadavérica (rigor mortis).

A quantidade de ATP presente na célula muscular é suficiente para suprir apenas alguns segundos de atividade muscular intensa. A principal reserva de energia nas células musculares é uma substância denominada fosfato de creatina (fosfocreatina ou creatina-fosfato). Dessa forma, podemos resumir que a energia é inicialmente fornecida pela respiração celular é armazenada como fosfocreatina (principalmente) e na forma de ATP. Quando a fibra muscular necessita de energia para manter a contração, grupos fosfatos ricos em energia são transferidos da fosfocreatina para o ADP, que se transforma em ATP. Quando o trabalho muscular é intenso, as células musculares repõem seus estoques de ATP e de fosfocreatina pela intensificação da respiração celular. Para isso utilizam o glicogênio armazenado no citoplasma das fibras musculares como combustível.

Uma teoria simplificada admite que, ao receber um estímulo nervoso, a fibra muscular mostra, em seqüência, os seguintes eventos:

1. O retículo sarcoplasmático e o sistema T liberam íons Ca++ e Mg++ para o citoplasma.

2. Em presença desses dois íons, a miosina adquire uma propriedade ATP ásica, isto é, desdobra o ATP, liberando a energia de um radical fosfato:

3. A energia liberada provoca o deslizamento da actina entre os filamentos de miosina, caracterizando o encurtamento das miofibrilas.

SANGUE

Sangue
Informações sobre o sangue humano, artérias e veias, tipos de sangue, célula do sangue, plasma, hemácias, hemoglobina, circulação sangüínea, glóbulos vermelhos, glóbulos brancos, tipos sangüíneos, principais componentes do sangue, sistema circulatório, fator RH sangue humano

Introdução

O sangue que percorre nossas artérias e veias através do sistema circulatório e possui extrema importância para nossa vida. Quando observado por meio de um microscópio, é possível verificar sua constituição se dá por um líquido amarelo, chamado plasma, onde flutuam um aglomerado de células brancas e vermelhas, água, proteínas, glicose e sais minerais.

Características, funções e componentes do sangue

Os glóbulos vermelhos são tão pequenos que em uma pequena gota de sangue são encontrados mais de cinco milhões deles. Os glóbulos vermelhos têm essa coloração graças à hemoglobina, que chega às veias sem oxigênio, após ter realizado sua distribuição, através das artérias, por todo o corpo. Como é o oxigênio que dá à hemoglobina a coloração vermelha, os glóbulos vermelhos das veias possuem de fato a coloração azul-arroxeada.

A vida útil dos glóbulos é curta, mas graças à medula de certos ossos é possível o nascimento de novos glóbulos a cada minuto.

No corpo de uma pessoa saudável, a distribuição destes glóbulos ocorre da seguinte forma: Para cada quinhentos glóbulos vermelhos, existe somente um glóbulo branco. Estes não possuem um formato definido, contudo, possuem tamanho superior se comparados aos vermelhos. Sua função em nosso corpo é tão importante quanto a dos glóbulos vermelhos, embora ocorra de forma bastante diferente. Os glóbulos brancos funcionam como verdadeiros "soldados de defesa", uma vez que protegem nosso organismo contra a invasão dos germes de inúmeras doenças. O combate contra estes germes ocorre com a absorção destes pelos glóbulos brancos que os absorvem, matando-os. A quantidade de glóbulos brancos geralmente é aumentada quando ficamos doentes, porém, este fato aumenta proporcionalmente a gravidade da doença.

O plasma, em sua grande maioria, é constituído de água, na qual estão dissolvidas várias substancias químicas importantes para manter o corpo ativo e saudável. Além disso, ele ainda transporta os alimentos digeridos, desde as paredes do intestino até qualquer parte do corpo, conduzindo o dióxido de carbono (produzido através da queima de oxigênio) para os pulmões, a fim de ser expirado. Em suma, pode-se dizer que o sangue atua como distribuidor, levando todas as vitaminas que o corpo precisa por toda a parte.

É comum locais com bancos de sangue, onde são armazenados o sangue ou plasma doados voluntariamente por pessoas de diferentes tipos sanguíneos. Este procedimento é extremamente importante, pois pode salvar inúmeras vidas em casos de urgência e ainda quando há a necessidade de transfusão. Há diferentes tipos sanguíneos (A, B, AB, O), além disto, o fator Rh pode ser positivo ou negativo, por isso, é muito importante que uma pessoa receba o mesmo tipo sanguíneo que o seu, pois a mistura é extremamente perigosa.

Curiosidades sobre o sangue humano:

- O sangue humano ao ser retirado do corpo coagula-se em apenas seis minutos.
- Dentro do nosso corpo, o sangue circula pelas veias e artérias numa velocidade de 2km/h.